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" that describe the vibration of a tangentially polarized piezoelectric-ceramic,

; staved, free-flooded cylinder transducer immersed in an infinite acoustic fluid
;. medium. TIhe mathtematical model that is develtuped uses the finite-element
° mCetid to calculate tire vibrational characteristics of the elastic cylinder and the
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20. ABSTRACT (Cout.)

acoustic pressure field of that portion of the fluid which closely surrounds thecylinder out to a spherical surface. Analytical methods are used to obtain the
boundary conditions for the spherical surface. This technique can be used to
predict the trnsducer's complex electrical impedance, transmitting voltage
response, and radiated power as functions of frequency. The vertical directivity
pattern and displacement distribution on the cylinder can also be-calculated for a
given ,requeicy. The inputs and outputs of the three computer programs that
implement this n-thematical modeling technique are discussed. Experimental
validation of theoretical predictions are given for three example cylinders.
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' [S
SUMMARY

PROBLEM

Develop a mathematical model that accurately describes the electrical and acoustical
response of a tangentially polarized piezoelectric-ceramic, staved, free-flooded cylinder trans-
ducer. Implement this formulation in a package of computer programs that, from a set of
user-specified dimensions and parameters, will automatically produce plots of the complex
electrical impedance and transmitting voltage response as function! of frequency and, at any 7;
selected frequency, will calculate the vertical directivity pattern and cylinder displacementdistribution. Compare the predicted response of a cylinder to that measured experimentally. "

RESULTS

A finite-element approach was taken to the problem of solving the equations of
motion for a tangentially polarized, piezoelectric-ceramic free-flooded cylinder immersed in
an infinite acoustic fluid medium. The use of finite--iement techniques makes it possible to
predict the broadband response of the transducer. Three computer programs are used in the
analysis: (I) a data generation program which produes the necessary finite-element input
information; (2) an instruction program for the MARTSAM finite-element structural analysis
and matrix system program; and (3) a program which solves the matrix equations that
approximate the fluid-loaded cylinder's equations of motion for the electrical impedance,
transmitting voltage response, and radiated power as functions of frequency. In addition,
for a given frequency, the vertical directivity pattern and cylinder displacement distribution
can be calculated. The ability of the mathematical model to accurately predict the in-air
and in-water responses of free-flooded cylinders was shown by comparing the thoretical
predictions to the experimentally measured responses of three cylinders.
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1 INTRODUCTION

The free-flooded cylinder transducer offers several distinct advantages over other
types of underwater sonar projectors. Free-flooded cylinders have good power-to-weight
ratios and bandwidths and are also, as their name implies, automatically pressure compen-
sated for any change in operating depth. They are, therefore, nearly depth insensitive and
have broad applications whenever a need arises for high-power sonar projectors with deep
depth requirements or for sonar projectors with very broad bandwidtls.

Acoustic propagation studies such as Project Artemis and LORAD have shown the
advantages that deep acoustic installations offer over near-surface 'ocalions. Most types of
transducers, such as the longitudinal vibrator, moving coil, or piezoelectric disk, require
internal pressure compensation to keep the exterior ambient pressure from damaging the
device or at least to prevent the response from greatly varying with changes in depth. This
also provides a high degree of desired acoustic decoupling from the m Bum and transducer
housing case at the back or inside of the radiating surface. Typical prn sure compensation
devices are pressure-release materials such as air or other gases, corp,- --, onionskin paper,
Min-K and Sonite. Compliant tubes have also found great use as pressv; r-release devices,
particularly in low-frequency bender-bar transducers. Most of thet-- * ,,ts however, lose
their dynamic compliance under prolonged exposure to high preqt4, .. df epth limited, or
in the case of gas compensation, need complex external equipe-

~As one solution to this problem, the firce-ftooded ring <,,c A r.,,fer was developed.
Initially, free-flooded cylinders were cast in one piece of piezoel ctric ceramic and were

radially polarized. These transducers used the K3 1 coupling of the electric and elastic fields.
Th%: use of vertically striped electrodes made it possible to polarize the solid cylinder in an
approximate alternating tangential polarization; this allowed the use of the higher K3 3
coupling.

When lower frequency use was desired and the larger cylinders became difficult to
fabricate in a single piece, a segmented or staved construction was designed (Ref. I). This
cozrstruction allowed the full use of the K3 3 coupling. Each stave was cast and electrcded
separately and then glued into a cylindrical configuration. A drawing of a typical tangen- I
tially polarized, free-flooded cylinder is shown in Fig. I.

Free-flooded cylinders have been analyzed in the past with several different mathe-
matical methods (Refs. 2-9). These techniques, however, often could not predict the broad-
band response of the cylinder because of inadequacies in the vibrational models of the
structure. Finite-element techniques have been used to develop very accurate models for
the cylinder that can predict the in-air response of the cylinder over a wide frequency band.
These models have been experimentally validated through the use of holographic interfero-
mery (Ref. 10). A finite-clement model of a tangentially polarized-ceramic cylinder hzs
been combined with an acoustic radiation program with good success (Ref. I I). In this
analysis, finitc-clernt techniques were used to calculate the normal velocities on the
boundaries of the, ylinder. Then the lelmholtz integral radiation program CIREF (Ref. 12)
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was used to calculate the acoustic radiation impedance and the pressure at points in the near

and far-fields at each driving frequency.

This last technique. although successful, is limited in its applications due to the
necessity for numerically evaluating numerous and expensive integrals. The method that is
devc,oped in this report uses finite-clement techniques as the Mathematical approximation
scheme for the elastic, piezoelectric-ceramic structur.. Finite-element techniques are also
used to mathematically model the acoustic fluid within a spherical surface which encloses the
cylinder. Boundary conditions which are simple ratios of Minkel functions can now be
applied Wc the spherical surface to give the mathematical appearance of a transducer immersed
in an infinite acoustic fluid medium (free-fick re-sponse). No numerical integrations are
performed for the acoustic radiation part of the pr.)blcm since the wave equation szparates
on a sph-ircail surface when the pressures and normal velocities arm expanded in spherical
harmonic series.

Section 2 of this report pr.-swnts the dcrivaticn of the matrix equations that
represent the equations of motion of a free-fl9oded cy!indcr. Tecniques for cakulating
both the cylinder's in-air ard in-water responses arc given.

t

Section 3 describes the computer programs that have been developed to implencit
the mathematical lcbhiques dcscribled in Sec.ion 2. Front a set of uscr-specified dimensionsb
and parameters, three prorams automatically generate the neces"ry finite-dement idealiza-
tions for the cyli-vJer and surounding sphere of acoustic fluid, set up thc requi'med matrix
equations. and then cakulate the complex electrical impedance. transm:tin. voltage response
and radiated rower as functions of frequency. In addition, at any frequency, the ertical
directiv-ty pattern and the displacement distribution on the cylinder can be Calculated.

Section 4 compares the theorctically calculated aad cperimentally measured
responses of three free-flooded cylinder transducers. Comparisons are made becen the
in-air resonance ,.-gd antiresonan-e frequencies, electrical capacitat-. in-water electrical
impedance, transmitting iioite response. and directivity pattern . Predic-tions are made
for maximum source kevl and maximum radiated power at sclected frequcncies The diffi-
cutics "nvolv.ed in predicting the response of a ceramic cylinder housed in a caster-oii-filed
rubber and bras .;aw by nmcans of a mathematical model for only the bare ceramic cylinder

= .are discassed.

2 FORMULATION

All of Euclidcan 3-space isdivided into two regions. R, and R-p (F-g- 2). Region R,
has a finite voium "d contains all sources of sound; i.e.. R1 contains the free-flooded
cylinder -nd a portion of the acoustic fluid. This rcgicyt is bounded by the spherial sufface

cS i . Region R, is infinite in extent ana is filled with a iomogencous acoustic fluid. The
outward-drawn normal from a point t on surface S I is lefined as n- Thenctor d(xt) is
the distance from a point on S ! to the field joint x in region R,. TIe r.oint i is interior

J(
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to S! in r"ion R1. Because ihe surface S is spherical. simple analytical expressions can be
found for the rclationship between the surface pressues and normal %veocities. This
acoustic radiation impedance is t; bounidary condition that must be applied to the equa-
tions of reion R, to yicld the interaction of region R, with region R.2. Iknce, the solution
of tIhe coupL-d sinxur-vi ratinfacoutAic-radiation problem can be reduced to a system of
boundary-.2lue equtio whose spatial domain is now a finite volume. A move dclailed
expanation of this formulation can be found in Ref. 13. An approximation method is
now useJ to soh- the equations of region R, subject to thc anlytical boundary conditions
for sumnace S 1 . Tbis approximation scheme utilizes the finite-lement method (Refs. 14-16).
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In the finite-clement formulation, the equations of motion for an elastic solid can
be written in the matrix form

[Ms ] {U)}+ [K.] {u}= {U} , (l)

where IMs] is the structural mass matrix, (Ks ) the structural stiffness matrix, [U) the

generalized nodal-point forces, and {u ) the nodal-point displacements. The derivative ii is

defined as 2  The structural mass matrix is d fined by
at-

I f[N'pTIN dV (2)i v

where p' is the density of the piezoelectric ceramic and IN') the structural-element inter-
polation function. The structural stiffness matrix is defined by

1 IKsE J B'ITIDI [B'I dV , (3)
V

where IIf is the matrix of deri-,tivesof the structural-clement interpolation function t
(the matrix that reiatcs the strairs to the nodal-point displacements). and &DI deno's theiclasticity matrix containing :he appropriate material properties.

The generalized nodal-point forces can be written as the sum of two forces,

iUj=tP}+F 5 ) . (4)

I where (P) is a vector consisting of the rodal-point forces arising from the fluid pressure on
the fluid--structure interfaces, and (Fs Iis a vector consisting of extcrnally applied nodal-
point forces (in this case an cketrical forcing function applied to the piezoelectric structure
via a sinusokally vrying charge).

* Similarly, the equations of motion wh.ch gorvrn the behamior of the acoustic fluid
in region R, are formulated in Rcfs. 17 and 18 as

"IMf, 1 ( + If" tIo = C) (5)

where IMfI is the fluid mass matrix, IKf) the fluid stiffness matrix. (C) the generalized
nodal-point forces, and (p} the nodal-point pressures. Again, ii is defined as 2p The
fluid nass matrix is defined by ;t 2

[Mf I JITN]dV , (6)
CV
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where c is the speed of sound in the fluid and [N] the fluid-element interpolation function.
Tlie fluid stiffness matrix is defined by

[Kf E f (BITIBI dV (7)

V

where [B I is the matrix of derivatives of the fluid-element interpolation function.

The generalized acoustic fluid nodal-point forces can also be written as the sum of ;A
two forces.

(C} = {S)+ {Ff} (8)

where {S} is a vector consisting of the nodal-point forces due to the acceleration of the
boundaries of the elastic structure, and (Ff} is a vector consisting of the nodal-point forces
that arise from the interaction between the acoustic fluid in region R, and the acoustic
fluid in the infinite exterior region R2 .

If the pressure interpolation function Ni(x,yz) for the acoustic fluid elements is
defined as

p3x.yz)= Ni (x.y~z) pi (9)I

where pi is the pressure at the ith node and p(xy,z) is the pressure anywhere in the
element, then Ref. 17 defines the fluid forces at node i as

(S)i= d (10)
elements i1

a p
- -where ~-is the normal derivative of the pressure. Using the boundary condition

n

where vn is the normal velocity of the fluid, Eq. (10) can be written as

(~ - le nt

[ft ;n d)
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But vn itself can be written in terms of the nodal-point accelerations as

N (13)

where N' is the aipropriate structural-element interpolation function for the normal dis-
placement at tiie htructure-fluid boundary, and U - is the acceleration of the jth nodal point
of the structure. Combining Eqs. (12) and (13), (Si) now has n e form

(S, =[J-2Ni NJ U. dS (14)
:lements j S dS1

Similarly, the fial.stiucture forcing function in Eq. (4) can be written as

.- Z [fN NjpjdSl (15)
elements j IS]

The fr'rce terms (S)i and (r) i are the coupling between the acoustic fluid and the
elasti, struw.'re. Comparing Eqs (14) and (15) reveals that by defining a coupling matrix

YI such that

S(T)jj elef=ents Nj dS ,(16)

Eqs. (14) and (15) can be wtten in matrix form as

[Si = -p fTI T fai} ,(17)

and

{P} = [T] {p} (18)

a The combined structure-vibration/acoustic-radiation problem can now be written
as two sets of coupled equations. The structure equations of motion appear as

[Ms] {ii} + [Ks ] {u} = [TI {p} + {Fs } , (19)

and the fluid equations appear in the form

[N.IM {P} + [Kfl {p} = -p[TIT {ii} + {Ff} . (20)

IN-AIR STRUCTURAL RESPONSE

The structure being considered here is composed of a material having not only elastic
properties but piezoelectric properties as well. Reference 19 formulates the equations of

9 i4 -
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motion for a piezoelectric solid. The assembled set of structural equations can be written
in the form

Muu 0 ]J Kuu K Jul 0 (21)
0 0 J K u K] Q

where {v } is the vector of nodal-point electrical potentials, [Q } the vector of electrical
charges, [Kuu] replaces [Ks], [MuuI replaces [Ms], [Kvl is the piezoelectric stiffness
matrix, and [K ], and [Ku] are the electro-elastic coupling matrices.

Equation (21) can now Le used to predict the in-air response of the free-flooded cylinder
transducer by calculating the resonance (short circuit) and antiresonance (open circuit)
frequencies and electrical capacitance.

The electrical-potential degrees of freedom mi-ust first be condensed to one degree of
freedom by applying the appropriate boundary conditions. This one electrical-potential
degree of freedom is the potential which is applied across the transducer's input terminals.
The potential degrees of freedom for the nodal points on one side of a stave of the cylinder
are all set equal to the driving potential v0 , and the potential degrees of freedom on the
opposite side of the stave are all set to zero. These two sides are the silvered surfaces (see
Fig. 1) to which the driven ard grounded input terminals are attached. The remaining
potential degrees of freedom in the stave's interior are left free. The application of these
boundary conditions and a repartitioning makes it possible to write Eq. (21) in the form

[21u,2 }+ i4h"' 1 u l=j/,o .0 i L 2,1 K t (22)

The second equation of Eq. (22) can be writter, as

K 2 ,1 ] 2,21 {v) = {0)

or

{v}= [K2,21" [K (23)I PU01
Substituting Eq. (23) into the first equation of Eq. (22) yields

?ri
1M1,11 + ti oJ A., 1Voj

10



or

(24) -4
1M1 ,1 I + IIl,i I O = (24)

where

[KI',] = [KI ,I- [K1,21 [K2,2 l  (K,1 (25)

Equation (24) can itself be written in the partitioned form
2

0 U K K
+ = U(26)

0u 0 1 0 vu K+ [K Q0

A resonance of the piezoelectric-ceramic cylinder occurs when the difference in the
electrical potentials applied to the silvered surfaces of each stave is zero. Therefore, with
v 0 = 0, Eq. (26) reduces to

[-t Muu + Kuul {uR} = {0} (27)

if a harmonic time dependence is assumed. The resonance frequencies and their associated
modeshapes can now be found. This is sometimes referred to as the short-circuit case.

An antiresonance of the cylinder occurs when the current to the transducer is zero.
Therefore, with Q = 0, the last equation of Eq. (26) can be written as

(vu> {u)+ Kvv v0  0

or

PO --- 7 {u}. (28)

Substituting Eq. (28) into the first equation of Eq. (26) yields

[Muu (ii} + i Kuu 1 (u} = {0} , (29)

where

t uu) :Ku t [Kup) (30)

""\ 11



Again, assuming a harmonic time dependence, Eq. (29) becomes

[-W2 Muu + Kuu ] {UA} {0 (31)

and the antiresonance frequencies and their associated modeshapes can now be found. This
is the open-circuit case.

For a free-flooded cylinder, three resonant modes of vibration are of interest: the
breathing, the bending, and the length modes. Fig. 3 shows these three modes in a cross-
sectional display of the cylinder. The breathing mode is the best radiator of sound and is
strongly excited in air. The bending mode is weakly coupled to the electrical drive and is
weakly excited in air. The length mode is a poor radiator of sound because of the small
volume displacements involved. When the cylinder is placed in water, however, combiaations
of the free-vibrational modes of the cylinder may become excited because of the acoustic

Iiadiation coupling.

I I
U -

BREATHING BENDING LENGT! i

" ! Figure 3. Crois-sectional drawing of the first three res onant modes of a frc,:-fiooded cylinder.
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The electrical capacitance at a circular frequency coc can be calculated by rewriting
Eq. (26) in the form

u l C U (32)

Solving the first equation of Eq. (32) for {u } yields

{u}" K-WIKuu 2 Muu ] 'I {Kup} 0  (33)

Substituting Eq. 33) into the latest equation of Eq. (32) results in

i ' 2VU [K CJ? Muu]-I {Kuv} + Kuv) V0 = Q , (34)[uu- c P) P

i Cv 0 = Q,

where the camacitance C is defined by

C K - (Kvu) [Kuu W C MUUi' {Kuu } (35)

~IN-WATER RESPONSE

If the in-air results calculated by means of Eqs. (27), (31) and (35) are as desired,
then this finite-element mathematical model for the free-flooded cylinder transducer can
now be combined in a mathematical model of the transducer immersed in an infinite fluid
medium; i.e., the in-water, free-field response of the transducer can now be calculated.

Equations (20) and (26) can be combined into one matrix equation of the form

Mf PTT 0 Kf 0 0 111 Ff

0 Muu Kui+KT K K U = 0 (36)
LW0 Ko u  Kvv Q

The nodal-point forces Ff acting on the surface SI arise from the presence of the
exterior infinite acoustic fluid of region R2 . To obtain an expression Ibr this forcing
function, the surface Helmholtz integral equation can be used (Refs. 20-22). This can be
Sonsidered as the boundary condition that is applied to surface SI because of the interaction
between region R, and region R2 . The integral formulation relates the acoustic pressure p
at any point x in the region R2 to the integral of the acoustic pressure and its normal

13



derivative o% er tile closed surface S. TV, surface Helmholtz integral equation can be
written in the form

Is 6-ikd(x~~t a (37p(x) f P

where k is the. wave number w/c (w the circular frequency and c the speed of sound in the
fluid), and the pressure in region R, must satisfy the radiation condition on a spherical
surface SR a! infinity (Ref. 21); i.e.,

!lina i Ip~r) 1
R-m r + jkp(r) dS=O (38)

SR  r--R

Thi relationship between the pressure field and its normal derivative on the surface
Si can be ialculated in several ways (Refs. 12, 23 and 24). However, since the surface Sl
has been cl'osen to be spherical, the steady-state acoustic-radiation Green's function
separates v hen expanded in spherical harmonics (Ref. 25), and the radiation impedance
associated vith each spherical harmonic subspace can be obtained in an analytical form.
This avoid! the costly numerical evaluation of numerous integrals, such as is performed in
the formuttion given in Ref. 1i. By expanding the pressures and normal velocities at the
finite-eler.ent nodal points on surface S! in a finite spherical harmonic series, it is possible
to derive an analytical solution for the radiation impedance on S1. Reference 13 gives the
details of this calculation. Writing Eq. (11) as

= -jWPvn (t) (39)ant

the relationship bc:ween the coefficients of a spherical harmonic expansion of the pressure
and the coefficients of normal velocity on the spherical surface Sl Gf radius a can be
written Lis

(a) jwpa (ka) pj(a) (40)

The radiation admittance I AR(ka) is defined in Appendix A of Ref. 13 as

h-0ka)

1i/A(ka) 9 + I -ka l-)(ka) (41)

14



where hl()(ka) is the etI order spherical Hankel function (Ref. 26). The expansion
coefficients pq(a) and vn(a) are the 0t1 components of the surface pressure and normal
velocity, respectively, and are given by

p(a,0,0) = pO~)y00(O0 (42)

and

vn(,,) vn (a) yO (0,0) ,(43)vn (a,0,0)= v. .

with
2* r

p a)=fd~f p(a,OO)Y 0 (0,0) sin(O)dO (44)

0 0

and 21 V 'N

vZ(a) =fdf vn (a,O,O)Y0 (0,)sin(0)dO (45)
0 0 

d

where (a,0,0) are the spherical coordinates of the point t on Si .

In practice, the summations in Eqs. (42) and (43) are carried out over only the first 1

few terms. Tihe exact number of terms that is necessary can be found by first calculating
the maximum value of ka and then finding the maximum value of k for which the imaginary
part of the acoustic admittance is zero below this ka value. Figure 4 is a graph of the greatest
value of ka versus the greatest value of 9- For e::ample, for a cylinder to be operated to a
maximum frequency of 20 kHz and enclosed in a fluid sphere 0.1 m in radius, the greatest

2xfa
valuc of ka = c- is less than ten. From Fig. 4, the greatest value of 9 (denoted byC ) is

therefore fourteen. However, only the ever-order terms need be retained because the
orientation and electric drive configuration of the cylinder produce an even symmetry plane
at 0 = 90 deg. Therefore, only those spherical harmonics which are even functions under a
reflection through this symmetry plane are retained. Tie summations for the above example
contain only eight terms.

The form of the forces acting on the fluid-sphere surface SI is the same as that of
the for "es due to the presence of the vibrating cylinder that act on the acoustic fluid [Eq. (17)1.
except that the coupling matrix now couples the infinite acoustic fluid exterior region to
the acoustic fluid sphere via the surface-fluid finite-clement interfaces. This coupling matrix
will be denoted by [Ms ] since its elements are analogous to a consistent mass nmatrix; e.g.,
they are the integrals of a quadratic form of the interpolation function Ni over the closed1-A

15
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spherical surface SI. The elements of the coupling matrix are defined by
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102

(MS) j H I f NN- dS - (46)

surface SI
elcinents

I Ic vectr I . Pf thef e hcats~ n=lon .l~ n .- c nteMagclh 
m n +i~ ina

SThe vcctor {F} therefore h's non-zero elements for those degrees of freedom asociated
with the finite-element nodal points that lie on the surface SI . Partitioning Eq. (36) into a
form .here the surface and interior degrees of freedom are separated, the partitioned matrix
equations become

(Nf)ss 0 (Mf) 1  oPT P
F0 0 0 0 F

(Aso (,Mf)ii (PT)T P
(Kf)ss 0 (Kf)si 0PS F
0 Kpj 0 K u

(Kf)is 0 (Kf)i.i 0il 0

16
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where

2. FS1 -PIMSI 011) (48)

The vector {in ) contains the accelerations defined by f- for each socal point on S

The subset of spherical harmonics that has been chosen must now be normalized to
be compatible with the finite-eement idealization of surface S1. The normalized spherical
harmonics that are the elements of the linear transformation n..trix I L) are given by

L2,(Oi) - (49)

and the full transfo-mation matrix appear, in the form

SL0 (0) L, (0) L4 (0) ... L, (0)-

I L = L 0  ( i) L 2  ( 0 i ) L 4  (' , ) ..L ( 0 i )  0 0 ) A

LO (r/2) L, (w12) L4 (z1/2)- . 1C w2

The tr-nsformation matrix has been normalized such that

ILITIMS i IL = Ill , 5)

jwiere [I is the identity matrix.

To transform the equations for suface S i to the chosen subset of normalized
spherical harmonic basis vectors, the right-hand side of Eq. (47) is multiplied by a transfor-

0mation matrix such that

0 o
0 0 0 so 

0

The spherical harmonic expansion of the deriatives of the nodal-point velocities can be
written in the matrix form

17
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Using Eqs. (51 and (53). Eq. (52) becomes

1 0 0 R.H.S. =1 (54)
0 0 I

-0 0 0 0

Substituting Eq. (40) for the normal velocity components in Eq. (54) yields

LT 0 0 ]li~n..

ILI0iial th 0 R.H.S. =.Q(55)

Similarly. the kft-liand side of Eq. (47 can be multiplied by the transformationA

matrix and the surface pressures expanded in spherical harmonics.

(p)s ILI (pt} (56)

such that

0 ! 0 0L~ii.S. = 0 
1

Lo 

o+ LT o ,,, ,, P3,-, t '
0 0L(f)sL 

0 LT(pT

0 1L0 0 ii0 0f i

LO 00 1 1 LI;00;!u L

[LKrisL 0WK~~ 0 K,] P
Kuv -Ti  Kuu
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Combin~ing Eqs. (55) and (57), the transformation of Eq. (47) can now be expressed as

LT(Mf)sL 0 1 LT(If),i  LT(pT)I j,
0 0 0 0 v[T

(NMf). 1L 0 (Mrf)1 i (JpT)i P

L 0 0 1 0 ?U

[LT(Kf),L + lI(l/al £)Oig 0 IT(Kf)s,i 0 p2 0

+0 K O 0 KI-- Kf)i,sL I (K)i 0 P 0 (58)

-TLK ' -T. K u.1u

Equation (58) can be solved at a set of circular driving frequencies Wfor the unknown
field variables pP:' pi and u in terms of the known elorical forcing functio.n Q. However,

this is a large system of equations, and a totzi solution at each frequency would be costly. I
Typically, the equations are more than one hundred fifty in number. To reduce the number j
of equations that need to be solved at each frequency, Eq. (58) is partitioned as shown above.
The second set of equations of Eq. (58) can be solved for I

and the solution substituted into the first set ofequations. Partitioning the matrices such
that the interior problem (Refs. 12 and 20) can be solved separately yields a small system
of surface equations to be solved at each driving frequency. If the driving frequency is
near an cigenfrequency of the interior problem, then the surface equations are overdetermined
by one degree of freedom. That one degree of freedom is the cigenvector of the interior
problem that is associated with that eigenfrequency.

t To calculate the interior ign-*ucs and igenve=tors, the lower right-hnd blocks ofEq. (58) can be written separately. However, a simple modification, suggested by 0. C.

Zicnkiewicz and B. M. Irons (Ref. 17). produces a symmetric form for the equations
describing the interior problem which makes it easier and less expensive to calculate all of
the eigenValues and eigenvectors. Solving the third equation of Eq. (58) for (p )i yields

{Pi= -IKfl' INffli.s ILI (j0j) - IKfI, / IMflii P)i(I I (59)

-[Kf-i! |pTIT (ii)- KfJAj [Kflis ILI (ps)

jV

1V
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Substituting this expression for (p1 into the foarth equation of Eq. (58) yed

(T~i [KfIjA (MfIi,5 ILI (0y9) + ITli (KfI--! JMfIi~ {P)

+[u + (T~I IKfrI'; IpTIT (ii)

S(-[Ts)I(LI + 11-11 IKfI~l; (Kfi. I LI) (pf9 )

+ {Ktw}P + (KuuI {u) [0) . (60)

Multiplying Eq. (59) by I.MfI ij and Eq. (60) by p and substituting them for the third and
fourth equations of Eq. (58) results in

LpT), f), 0 LT( f)i,i L (pT) pT

00 LTs

Pt 0

-407)s L + (pT), (Kf)i'- (KfksL PKw', 0 A U j L.

T1he lower right-hand blocs of Eq. (61) arc now symmetric matrices and can be con-
sidered as a matrix equation of the form

r

L~(Kf)-j,,i(Mf).i PMuu + i (Kf)ili(PT)TiEJ1)(2

+ [mP~ii 0 0

Ilicse are the equations of motion for the free vibrations of the coupled structurelacoustic-
fluid-sphece problem with the boundary condition of zero pressure on thc sphere surface

20



(the Dirichlet boundary condition). The eigenvectors of this system form a square trans-

formation matrix I U I such that the first column of the matrix is the eigenvector that corres-
ponds to the smallest eigenvalue. Operating with this transformation on the "mass" and
"stiffness" matrices of Eq. (62) results in

[uIT [(PT)i (Kf).i 1 (Mf)i,i PMuu + ( T) i (K -1 T [U]= '

and
4

(M j 0 !2~ ....
[U]T 0w .]..... 0 = [ Diag. (64)

0 Pj I
Applying the transformation [U1 to Eq. (61)and expanding u I such that

I~il -[u fg} (65)

where fg }is the set of unknown coefficients of an expansion in the eigenvector basis
functions, yields a set of equations of the form

mi I Pt 0- D 'F 1 1 M,2 H+ [ Il K1,2  ' o
-- v Q- a (66)

-, gn
if the following definitions are made:

[LT MIf) L T]

I, MI,,2I _= ( s,i LIPS [U) (607)

tM2,1  U Mf)i.i (Kf)'1 (Mf),s L 0]

|2,1 [U] LPT)i(Kfli (Mf)isL 0
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IKII I ( K ')s 's L+( I0rt)Diag0 1

[KI LT (Kf),i 0 "1 [U,, =_ 0 K Kv

and

[K2 jT r (Mf)ii (Kf)- (Kf)i'sL 0 I

L-(PT)s L + (T) i (Kf)l i (Kf)is L pKuv

Equation (66) can be solved in the frequency domain by first solving the second
set of equations for {g } and substituting the solution into the first set of equations. For
driving frequencies that are close to an interior eigenfrecquency, a solution to the first set of
equations cannot be tound because factors of 1/(w? -w 2) are present. To avoid this singularity
problem, the transformed surface piessure and electric potential equations are augmented by
the eigenvector that is associated with the interior eigenfrequency that is close to the driving
frequency. Therefore, the system of equations never needs to be overdetermined by more
than one equation. However, for convenience, all those equations that are associated with
eigenfrequencies of the interior problem that lie inside the frequency band of interest can
asa block be used to augment the surface equations; i.e., 1Ki I I and [MI i I are enlarged
by k rows and columns. Equation (66) now appears as

_'i I1 MI4 II1,2 , i + t 00 9%= ,.+~ ...... ..kJ lii +,,,-
- 9 k ,- (6)

2,1I In-k In-k 2,1 a-)Dia gn-k

if the following definitions are made:

[M 1- MIA (M,.)kI (69a)L(M2,1)k lk

IM1,2 1 0 (69b)

M2,11 I(M2,1)n-k 0 1 , (69c1
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K l'l  (K1,2)k ] (69d)[KI'l (K,1)k (w2 )Diag (9d

K(K I 2)n1k] (69e)

and

_k2 ,1 1 (K2, 1 nk 01 (69f)

The subscripts k and n-k refer to the blocks of the matrices that are associated with the k
smallest and n-k largest (the remainder out of n total) interior eigenvalues. The value of k
is associated with the lowest eigenfrequency that lies above the frequency band of interest.

Assuming a time dependence of ejw t, the second equation of Eq. (68) can be solved for

gnk [ 2M2 ,1  v (70)
L lk J (13 1 Diag k2,11

!, g k

Substituting Eq. (70) into the solution to the first equation of Eq. (68) results in

g1 = [(-w2 MA1,1 + - 1 ,1)+ (_w2 M11, 1 2 )Diag

S(W2 M2 ,1 - K2,)I Q (71)

tot

In general, this set of equations is not large; therefore, solving the system at a great number
of frequencies is not expensive.

calculated as a function of frequency. Defining the complex impedance Z from

Z , (72) .

where the current I is defined by
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and

Q: Q = ,w

the electrical-charge forcing function can be written as

Q ": (73)j1

Substituting Eqs. (72) and (73) into Eq. (71) yields

Z = +M1 ,I+ K I +)+ (-w2 M I, 2 + k I,2) 2 -
gk nkwDa

(2 K2,1 (74)

The solution vector for Eq. (71) that is obtained for constant-voltage drive

tgk

can be calculated from Eq. (74) by normalizing the solution to Eq. (74) to the impedance
Z; i.e.,

2z + f(-w2 +M-wI- FA 1,, 1,2 +1,2) ( 22

I = (Ofi' KII+'o2I2+I2 -°2k Diag

(W2 - i- l . (75)%

The surface and interior acoustic-fluid-sphere pressures and the cylinder displacements Y
per input volt can now be calculated from Eqs. (56), (65) and (70).

Since the mathematical formulation presented here includes no structural damping,
the efficiency of the t ansducer is 100 percent. Therefore, the radiated acoustic power is
equal to the electric power delivered to the transducer. The radiated power P can be calculated
from

P = iRe (vl*). (76)
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Substituting Eq. (72) into E 1. (76) yields

P - 2 Re (vv*Z*) (77)

When vv'* 1 , Eq. (77) calculates the radiated power per input volt and can be written as

Re(Z)
P] 2- (78)

The components of a spherical harmonic expansion of the pressure at ary point
x(r,O) in region R2 are given by

h -)(kr)pk(r) =pk(a) h,- ) (79)

where p9,(a) is given by Eq. (75). The actual pressure at x can now be calculated by using

Eq. (56) for the appropriate angular coordinates; i.e.,

{p(rO')} = [L(O'] {pq(r)} (80)

The derivations of these eroations are found in Appendix B of Ref. 13. If the transforma-
tion matrix [L] of Eq. (56) is now used in iq. (80), then the pressures in region R2 are cal-
culated at points on the surface of a sphere of radius r with the same angular distribution as
the nodal points on surface SI . The calculated vector {p(r,O')} is really a vertical directivity
pattern.

3 COMPUTER IMPLEMENTATION

The mathematical formulation that has been constructed for the analysis of
tange:tially polarized, piezoelectric-ceramic, free-flooded cylinder transducers was
implemented 'a a series of three computer programs. The first program generates input data
for the second and third programs. The second program is a MARTSAM finite-element
instruction program, and it calculates the cylinder's in-air response and forms the matrices
that comprise Eq. (74). The third program performs a frequency sweep, and at each frequency
it calculates the complex electrical impedance, radiated power per input volt, and transmit-
ting voltage response. Directivity pattenis and cylinder displacement distributions can be

calculated for selected frequencies.

* 2
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PROGRAM DATFFC*

This program takes given dimensions of the cylinder to be analyzed and specified
finite-element idealizations of the acoustic-fluid-sphere surface and the cylinder and generates
the necessary data for the second and third programs. The computer program DATFFC
needs to have the following input parameters specified by the user in MKS units:

RI, inner radius of the cylinder
RO, outer radius of the cylinder
RLNTH, total length of the cylinder
NSTAVE, number of staves that comprise the cylinder
SMALLA, radius of the fluid-sphere surface S1
RHO, density of the acoustic fluid
RCV, speed of sound in the acoustic fluid

DENSTY, density of the piezoelectric-ceramic material
RMATPM(I), ten piezoelectric-ceramic material parameters (see Ref. 8)
NPSR, number of fluid-sphere surface elementr
NLR, number of structure elements along the half-length of the cylinder
NTR, number of structure elements through the thickness of the cylinder
NSPHH, number of terms used in the spherical harmonic expansions
KAUG, number of degrees of freedom used to augment the surface

equations to prevent singularities in the solution over the frequency
band of interest

CAPFRQ, the frequency at which the in-air electrical capacitance of the
transducer is to be calculated

The structure has midplane reflective symmetry in the z-direction and N-fold
reflective and rotational symmetry about the z-axis. The structure therefore consists of N
unit cells. It is necessary to mathematically model only one unit cell and apply the boundary
conditions of zero azimuthal displacement for the boundaries of the unit cell that are
shared by its neighboring cells. Because the electrical driving force is axisymmetric, only
m = 0 circular harmonic motion is considered (see Ref. 13). This means that the cylinder
displacements and the acoustic-fluid pressures are independent of the azimuthal angle o, and
if the displacements of the cylinder are written in terms of a cylindrical coordinate system,
then all azimuthal degrees of freedom can be set to zero with no lose of accuracy over the
frequency band of interest. The mathematical modeling can therefore be reduced to a two-
dimensional problem even though the unit cell of the cylinder, one stave, is piot axisymmetric.
In addition, because the cylinder has midplane reflective symmetry (see Fig. 5), modeling of
only the top half of a stave and the top half of the fluid sphere and applying the symmetry
boundary condition of setting to zero the z-displacements of the cylinder in this plane is
sufficient to generate the results for the entire cylinder (Ref. 27).

From the list of input parameters, the fluid sphere is idealized into FTAXI2
MARTSAM finite elements based upon the number of 2lements specified for the sphere

* DATFFC: from data generation program for the analysis of free-flooded cylinders.
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surface and the cylinder length and thickness. The FTAXI2 clement is a compressible fluid

4axisymmetric element with a triangular cross section. Each element has six nodal points
with a single degree of freedom, the pressure, asociated with each node. Figure 6 shows a
typical fluid-sphere idealization. The triangles are calculated by means of a triangularization
routine developed for a contour plotting program (Ref. 28). Lists of the (r, z) coordinates
of each nodal point in the fluid sphere idealization (COORDF) and the fluid material para-
meters and element assembly data (ELMNTF) are produced.

The finite-element model for the piezoelectric-ceramic cylinder is generated by
modeling the top half of one stave of the cylinder with PHEX20 MARTSAM finite elements.
Again, the idealization is determined from the list of input parameters. The PHEX20
element is a solid, three-dimensional element with 20 nodal points for each clement. Each
nodal point has three displaccment degrees of freedom (x, y and z in a rectangular coordinate
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Figure 6. C(ros-sectional di play of the finite-elcment idc2lization of the top half of
the acoustic fluid sphere that encloses the cylinder.

system) and an electrical-potential degree of freedom v. Fig. 7 shows a typical stave
idealization. Lists of the (x, y, z) coordinates of each stave nodal point (COORDS) and the
piezoelectric-ceramic material parameters and stave element assembly data (ELMNTS) are
calculated.

When the coordinate data COORDS and assembly data ELMNTS are used in the
MARTSAM finite-clement program. the mass and stiffness matrices are generated for the
stave model in a rectangular coordinate system. Becuase an axisymmetric structural repre-
sentation is desired, it is necessary to transform the equations to a cylindrical co,.-dinate
system. The DATFFC program generates a list of rotation angles for each nod:l point
(BCLIST), which MARTSAM can then use to perform the coordinate system transformation.
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Firure 7. finite-croent idlilio~in of the top hjltofonc stare orthe Lylinder. I
t Two lists are generated that will provide MARTSAM with the necessary information

to constrain the three-dimensional stave model into a plane (i.e., a two-dimensional axisym-
metric model) whit:-Asill retaining tile proper electrical properties for a tangentially polarized.
staved cylinder. Time BAKADL list sets equal the radial- and vertical-displacement degrees

of freedom for nodal points with identical r- and 7-coordinates. Thec MPACKL list packs A

29



out the appropriate radial, azimuthal, and vertical degrees of freedom. In addition. the two
lists apply the appropriate electrical-potential boundary conditions. All of the potential
degrees of freedom for the nodal points on one side of the stave are set equal to represent
the driven foiled surface, and all of the potential degrees of freedom for the nodal points on
the opposite side of the stave are set equal to zero to represent the grounded foiled surface.
The remaining electrical-potential degrees of freedom are left free and are condensed out
later.

The program DATFFC also generates the spheric:! harmonic transformation matrix
I LI and the structure/acoustic fluid coupling matrix [Ti. Finally, lists of parameters and
matrix sizes are produced for use in both the second and third programs.

PROGRAM MRTFFC*

This instruction program forms and assembles the mass and stiffness matrices of the
fluid and for the piezoelectric-ceramic stave, transforms the equations for the stave from
rectangular to cylindrical coordinates, constrains the displacement degrees of freedom into
an axisymmetric representation, and applies the appropriate displacement and electrical-
potential boundary conditions.

Following the procedure given on pages 10, 1I, the electrical-potential degrees of
freedom are condensed down to the one driving potential. Equations (23) and (24) are then
used to calculate the resonance (short circuit) and antiresonance (open circuit) frequencies
of the cylinder in air (FREQST and FREQOT). The electrical capacitance (CAP) in air is
also calculated from Eq. (30).

The cigenvalues and eigenvectors of the interior problem are calculated from
equation (57), and the KAUG lowest eigenfrequencies (FREQY) should contain at least
one frequency above the frequency band ol interest. Augmenting the surface equation by
too many degrees of freedom does no harm except to slightly increase computational costs,
but augmentation by too few equations can cause singula-ity problems.

Finally, the matrices that comprise Eqs. (70) and (74) are assembled for use in the
third computer program.

PROGRAM FRQFFC**

This program requires the following input parameters to be specified by the user:
IFFQ, the lowest frequency of interest
ILFQ, the highest frequency of interest
IFQINC, the frequency increment
R(i), distances chosen for the calculation of the transmitting voltagc

response and/or directivity patterns

* MARTSAM program for the amlysis of free-flooded cylinders.
**freuency-sweep computer programs for the analysis of free-flooded cylinders.
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Using Eq. (74), the computer program FRQFFC calculates the real and imaginary
parts of the electrical impedance Z for each freqw.ncy. Also at each frequency, Eq. (78) is
used to calculate the radiated power, and then the solution vector is normalized to Z and
the trunsmitting voltage response is calculated from Eqs. (79) and (80) at 0 = 0 deg and
0 = 90 deg. The 0-deg response is calculated off of the top of the cylinder along its symmetry
axis, while the 90-deg response is calculated off of the side of the cylinder on its symmetry
plane (see Fig. 5).

Vertical directivity or beam patterns can be calculated for any frequency and distance.
Pressures at nodal points that are interior to the fluid-sphere surface and the structural dis-
placements can also be calculated for any frequency. From this data, contour plots can be
made of the magnitude and phase of the near-field pressure distribution.

4 EXAMPLE ANALYSES AND COMPARISONS WITH EXPERIMENTS

To assess the accuracy of predications made with the mathemat:-al model presented
in this report, three existing free-flooded cylinders were analyzed. These cylinders were
chosen because they have quite differenct characteristics, and experimental measurements
previously made of the electrical impedance, transmitting voltage response, and directivity
patterns were readily available.

Cylinder A is constructed from 32 staves of barium titanate (Ceramic B type)
piezoelectric ceramic. To waterproof the bare ceramic element, the cylinder was fiberglass
coated. This was done to keep to a minimum the discrepancies between the physical trans-
ducer and the mathematical model of the transducer. Except for the waterproof coating,
no other additions were made to the bare ceramic element before testing. The agreement
between this experiment and the predicted results will be the best possible.

Cylinder B is a 60-stave cylinder constructed from a type of lead -iirconat,ead
titanate ceramic (a PZT-8 variety). This transducer consists of the ceramic cylinder wrapped
with fiberglass to provide mechanical bias that will protect !he ceramic from fracture when
driven at high levels, inner and outer rubber boots, brass end-rings, and castor oil surround-
ing the cylinder between the inner and outer rubber boots. (See Fig. 8 for a cross-
sectional sketch of a cylinder in a typicai case.) The cylinder can now be easily mounted,
driven at high levels, and is electrically insulated from the water by the rubber boot and
castor oil.

Cylinder C is a 30-stave cylinder constructed from another type of lead zirconate-
lead titanate ceramic (a PZT.4 variety). This transducer again was tested with the piezoelectric-
c-ramic cylinder wrapped in fiberglass and installed in a case similar to the one described for

S Cylinder B.
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F CYLINDER A

Cylinder A was constructed only for the purpose of comparison with theoretical
predictions. Ile 32-stave barium titanate (ceramic B type) cylinder is not wound with
fiberglass filaments nor does it have a protective case or any provision for mounting. Com-
parisons between experimentts conducted with this cylinder and theoretical predictions
should yield the best possible agreement.

Table I gives some of the parameters used as inputs to the computer programs. As
was pointed ou. in Ref. i1, material parameters that are listed in handbooks (Ref. 29) are
often very inaccurate. Ceramic varies from manufacturer to manufacturer, and differences
in material parameters as great as 20 percent are not uncommon in supposedly identical
types of ceramic. In an attempt to produce material parameters which more accuratcly
describe the ceramic out of which the cylinder under consideration was constructed, a simple
perturbation technique was used to fit the breathing resonance, breathing antiresonance,

fand the electrical capacitance of the cylinder in air. In general, this technique works well.
The book and perturbed values for the piezoelectric-ceramic material parameters are listed
in Table 2. Table 3 gives the measured values for the electrical capacitance and the ust
three resonance and antiresonance frequencies of the cylinder in air and also the predicted
values on the basis of both the book parameter values and the perturbed parameter values.

Table ;. Input parameters for the three example free-flooded cylinders.

Parameter Cylinder A Cylinder B Cylinder C

RI (in) 0.1641 0.09843 0.08573
RO (m) 0.1927 0.1151 0.09287
RLNTII (in) 0.1272 0.08636 0.07938
NSTAVE 32 60 30
SMALLA(m) 0.22 0.14 0.12
RHO (kgim3) 1000 1000 1000
RCV (mjsec) 1500 1500 1500
NPSR 9 9 9
NLR 22
NTR I 1 1
NSPHH 10 10 10
KAUG 10 10 10

The measured and preid-tCd real and imaginary parts of the in-water electrical
impedance arc shown in Fig. 9. The small discrepancies between the computed and the
measured responses are attributed to inaccurate material paratrs and limitations in the
model (inclusion of no material loss sand the inability to model glue joints, for example).
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The measured and predicted transmitting voltage responses are shown in Fig. 10.
The measurements and calculations were made at a distance of 1 m off of the side (0 90-
deg) of the cylinder. The agreement is again excellent.
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FREQUENCY, kHz

Figure 10. Transmitting voltage response of Cylinder A as a function of frequency.
Solid line is for experiment and dashed line for theory.

Figures 11 and 12 display the measured and predicted vertical directivity or beam
patterns at 3,000 and 7,000 Hz, respectively.

The maximum source level and maximum radiated power can be calculated by
assuming the maximum permissible electrical field will occur for an applied voltage of
5V/0.001 in. (2,000 V/cm, a conservative estimate). For Cylinder A, the minimum distance
between adjacent electrodes is 3.2 cm and the maximum voltage is therefore about 6,400 V.
At 3,000 Hz, the maximum source level is 213 dB re I uPa at 1 m, while at 7,000 Hz, the
maximum source level is 210 dB re 1 pPa at 1 m. The minimum source level for the cylinder
Jrive:a at 6,400 V over the frcquency band from 1.5 to 10.0 kHz occurs at about 5,000 Hz
and is 190 dB re I pPa at I m. The maximum radiated power at 3,000 Hz is 6 kW, and the
maximum radiated power at 7,000 Hz is 1.7 kW.

ICYLINDER B

Cylinder B is constructed from 60 staves of lead zirconate-lead titanate (PZT-8 type)
tangentially polarized piezoelectric ceramic. Tie in-air measurements of the iesonance and
antiresonance frequencies and , .ectrical capacitance were performed on the bare ceramic
element, but the ;n-wateir experiments were conducted with the cylinder wrapped in fiberglass
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Figure 11. Vertical directivity pattern for Cylinder A at 3,000 Hz. Solid line is for experiment and
dashed line for theory. Pressures are plotted in dB re I I.l~a for I V input at I m.
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Figure 12. Vertical directivity pattern for Cylinder A at 7,000 Izt. Solid line is for experiment and
dashed line for theory. Pressures arc plotted in dB rc I ;Ih for I V input at I m.
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and mounted in the case shown in Fig. 8. Table 1 gives the dimensions of the ceramic

PZT-8 like ceramic material, and Table 3 shows the measured and predicted in-air response
of the cylinder. Again, the use of perturbed material parameters produccs good agreement

between theory and experiment.

The measured and predicted real and imaginary parts of the electrical impedance are
shown in Fig. 13. The agreement between experiment and theory for this cylinder is rot as
good as it was for Cylinder A. The presence of the case appears to have two major effects
on the response of the transducer. First, the case ir;reases the length of the cylinder, giving
the cavity a greater volume; therefore, the first cavity resonance occurs at a lower frequency
than predicted. Second, the rubber boots and castor oil introduce larger losses into the
system than were present in Cylinder A. Because the mathematical formulation used for
these predictions includes no structural damping, at frequencies where losses in the rubber
and castor oil are appreciable, the predicted impedance does not compare very well with
the measured impedance.

Figure 14 shows the measured and predicted transmitting voltage responses. Agait,,
the lack of damping in the mathematical model and the increase in cavity size cause some
discrepancies. In addition, it appears that minor resonances of tile case or mounting hardware
have been introduced into the systei.

Figures 15 and 16 show the measured and predicted vertical directivity patterns at
the frequencies of 4,500 and 6,000 Hz, respectively. The agreement of 4,500 Hz is excellent
and the agreement at 6,000 Hz is good. The differences in geometry and damping between
the bare ceramic cylinder and the transducer as tested appear to produce the greatest effect
off of the top of the cylinder (for small angles of 0).

The maximum source level and maximum radiated power can be calculated in the
same manner used for Cylinder A. Assuming a maximum voltage of 2,000 V the maximum
source level is approximately 206 dB re I /Pa at 1 m at 4,000 Hz and 193 dB re 1 pPa at
I m at 8,000 Hz. The maximum radiated power at 3,000 Hz is 5 kW, at 4,000 Hz is I kW,
and at 8,000 Hz is about 2 kW.

CYLINDER C

Cylinder C is a 30-stave cylinder constructed from lead zirconate.-lead titanate
(PZT-4 type) piezoelectric ceramic with the dimensions given in Table 1. Tie in-air measure-
ments of the resonance and antiresonance frequencies and electrical capacitance were per-
formed on a bare ceramic element, and quite interesting results were found. From Table 3,
the measured in-air response of the transducer shows that the bending resonance and anti-
resonance frequencies lie between the breathing resonance frequency and the breatiing
antiresonance frequency. This was verified by using an optical probe to measure the
displacement distribution along the length of the cylinder at the frequencies of interest.
The calculated in-air response made with book material parameter values also predicted this
phenomenon but not at the correct frequencies. Performing the same simple three-parameter

39



1000

800-1

600-

400-

o200 Ij

z IM (l

0 0 2. .l608.0 1.

FREUECY k z

-40040



5

I

___ ________ 0 F
N -e6 I

N
N

N
N

0

/

F

I

//
I
I Iii

I ~

If
I -~

L

'I I

/
I'

0*

-. - - - - C') i
0

£5 C'~

_______________ _____________________________

__ I, p.0-p

2 0 0 0 0 0 1I U, (V) (~J - 0

WT W AIPdTf I SJ SP 3SNOdS~J 3!~V1'OA DNI1j.UNSNV~J. I
I
I

41 t

I



F.
270r 150-- --140--130 120- 120- -130-140-150 90*

Figure I S. Vertical directivity pattern for Cylinder B at 4,500 IftL Solid line is for experimecnt
and dashed line for theory Pressures are plotted in dB rc I JUNa for I V input at I m.
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Figure 16. Vertical directivity pattern for Cylinder B at 6,000 Hz. Solid line is for experiment
and dashed line for theory. ressures arc plotted in dB re I UPa for I V input at I m.
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perturbation calculation that was performed for Cylinders A and B resulted in only a
partial success. The calculated resonance and antiresonance frequencies more closely fitted
the measured frequencies, but the bending resonance and antiresonance frequencies no
longer lay between the breathing resonance frequency and the breathing antiresonance
frequency. It appears that either the simple perturbation calculation performed here is not
sufficient to fit all of the material parameters or the finite-element model of the cylinder
has too few elements to predict the proper bending. However, this discrepancy in frequencies
is only about 5 percent and should not affect the in-water response of the transducer. Table 2
,ies the book and perturbed piezoelectric-ceramic material parameter values.

Figure 1 7 shows the measured and predicted real and imaginary parts of the electrical

impedance. The experiment was performed with the ceamic cylinder again housed in a case
similar to Fig. 8. The predicted impedance closely follows that measured experimentally
except at the two frequencies where again damping R.attens the measured response.

The measured and predicted transmitting voltage response for Cylinder C is shown
in Fig. 18. Except for the overestimation of the level at the cavity resonance frequency, the
two curves show excellent agreement.

Figures 19, 20 and 21 display the measured and predicted vertical directivity patterns
at 3,000, 6,0G0 and 10,000 Hz, respectively. Just as for the previous cylinder housed in a
case, the measured and predicted patterns do not agree as well at 0 = 0 deg, as they do at
0 = 0 deg. "The added structure and the presence of structural damping give the transducer
a response that is slightly altered from that of the bare ceramic elements.

The maximum source level and maximum radiated power are found by assuming a
maximum voltage of 3,500 V. The maximum source level is therefore, for example, 203 dB
re I pPa at I m at 3,500 Hz and falls to only 197 dB re 1 pPa at 1 m at 8,000 Hz. The
maximum radiated power is 7.4 kW at 3,00u Hz but down to 0.4 kW at 5,750 Hz and to
0.2 kW at 8,000 Hz. These are again conservative figures since acceptable drive levels are
often 6 or 8 V per0.001 in.

5 CONCLUSIONS

The powerful mathematical modeling techniques that have been presented in this
*report can be used to calculate the response of any axisymmetric transducer (or transducer

that can be approximated by an axisymmetric representation over the frequency band of
interest) when immersed in an infinite acoustic fluid medium. In particular, this report
describes the computer programs that have been written to use this mathematical formula-
tion in the analysis of tangentially polarized piernelectric-ceramic, free-flooded cylinder
transducers. The programs are designed to take a few basic parameters and produce a set

V of graphs that display the complex electrical impedance, transmitting voltage response, and
radiated power as functions of frequency. At any selected frequency, the vertical directivity
pattern (the horizontal directivity pattern is always circular since an axisymmetric response
isissumed) and displacement distribution on the cylinder can be calculated.
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Figure 19. Vertical directivity patter for Cylinder Cat 4,000 Ilz. Solid line is for experiment

and dashed in¢ for theory. P¢essu-s we plotted in dB re I Pa for I V input at I m.
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Three free-flooded cylinders were analyzed and the results compared with experiment.
The first experiment was designed 4o approximate as closely as possible the transducer that
was mathematically modeled. No fiberglass wrapping or transducer case was employed.
The comparison between theory and experiment for this cylinder is excellent at all
frequencies.

The agreement between theory and experiment for the ot.h-r two examples is no
longer excellent, but the predictions are still good over a broad frequency band. The
assumptions in the mathematical model remain the same; i.e., no structural damping and
no case. The transducer used in the experiments, however, consists of the piezoelectric-
ceramic cylinder enclosed between inner and outer rubber boots and brass end rings and
filled with castor oil. This additional structure increases the minimal damping that exists
for the ceramic cylinder to a significant amount.

fIn addition to the structural damping (particularly in the rubber boots and castor
oil), the added structure makes its own contribution to the produced pressure field. Since

j the model includes none of this added structure, it cannot predict the scattering from the
case of the pressure field produced by the ceramic cylinder.

These deficiencies are not considered to be serious. If more exact predictions are
rtceded, future mathematical modeling efforts can be directed toward modeling of the
omplcte transducer, including the brass end rings, castor oil, and rubber boots. Structural
damping may also be included in the model. These improvements should pose no great
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wrathematical modeling difficulties but would increase computational costs. At present I
computer rates, the minimum total cost to operate the computer programs described in this

report is approximately S 125. This high cost for the analysis of each proposed free-flooded

cylinder limits the design capabilities of the model. However, as a final check or a last

iteration on a set of dimensions chosen by some simpler and more economical means, the

mathematical modeling techniques described in this report offer predictions that are nearly

as accurate as experimental measurements and are much dieaper and faster.
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